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Turbulent buoyant convection from a 
source in a confined region 

By P. C .  MANINS 
CSIRO Division of Atmospheric Physics, Station Street, Aspendale, 

Victoria, Australia 

(Received 28 June 1978) 

An extension of the model first proposed by Baines & Turner (1969) is derived with 
careful attention to the conditions required for its a.pplication. The most important 
of these are that the Prandtl number v/K is of order unity or greater, the ratio of the 
length L to depth H of the region is greater than about 1.2 for the two-dimensional 
region considered and R is so large that R 2 L / H  and R 9 l/a. The characteristic 
group 

R = aPFt H l v .  

R2 is a Grashof number based on the source strength Fo of the buoyant convection 
which is modelled using turbulent plume theory and the entrainment constant a,  
the ratio of inflow velocity across the edge of the plume to mean local plume velocity. 
The conditions on R ensure that the source of buoyant convection is the dominant 
transportive mechanism in the region and,the restrictions on the aspect ratio ensure 
that there is clear separation between the passive motions in the bulk of the region and 
the intense highly confined buoyant convection. 

The manner in which the convective fluid recirculates to become part of the passive 
interior is studied and shown to be controlled by the same dynamics as fluid intrusion 
into a stably stratified environment. 

Several new solutions are obtained, including cases of steady conditions involving 
only one source. 

1. Introduction 
We here formulate a model system of convection a t  very high Rayleigh number 

driven by small steady buoyancy sources a t  the bounding horizontal surfaces. Atten- 
tion will be focused on a two-dimensional symmetric region containing only one line- 
source of buoyancy, of strength 2F0, a t  say 0 on the lower boundary, where 0 is the 
origin of the x (horizontal) and z (vertically upwards) axes, with corresponding fluid 
velocities u and w. The three-dimensional axisymmetric problem is similar but will not 
be treated here. Only the part x > 0 will be considered and alternatively may be 
thought of as being bounded by fixed walls. As illustrated in figure I the source a t  0 
generates a plume of turbulent buoyant fluid which dilutes as i t  rises under gravity by 
entrainment of the interior fluid. Only the behaviour a t  large times is studied, that  is a t  
times much greater than the time scale for all the fluid in the confined region (here- 
after referred to as the box) to have been entrained a t  least once into the plume, for 
then a quasi-steady state may be reached in which the velocities are everywhere steady 
but the buoyancy a t  every point increases with time. 
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Upon reaching the upper surface a t  z = H the plume turns and spreads laterally in 
the outflow region. This is delineated from the interior where fluid flows towards the 
plume, by the surface u = 0. The turbulence in the region of outflow is quickly reduced 
towards the much lower level characteristic of the interior due to suppression by the 
stable stratification which is a feature of the interior region. The outflow fluid is 
merely interior fluid looked at at a slightly earlier time. 

While all other boundaries of the box are assumed to be insulating, the horizontal 
surface z = 0 at the level of the buoyancy source is permitted to conduct buoyancy 
uniformly from the region at a rate ( 1  - yc) Po ( 1  1 - ycJ < l),  over the length L of the 
box. A diffusive boundary layer exists there and this will be shown to be thin. 

Further, the fluid in the box is assumed to be gaining buoyancy at  a uniform rate 
yR F,. Negative yR would correspond to uniform loss of buoyancy due to, for example, 
long wave radiative divergence in the atmospheric boundary layer. Positive yR would 
correspond to a uniform buoyancy gain by, for example, internal heat generation by 
radioactive decay in the earth’s mantle. 

The most important simplification to be made in the model is the parameterization 
of the turbulent plume. The plume increases in volume flux and decreases in buoyancy 
with increasing distance by the turbulent entrainment of nearby fluid. Neither the 
actual mechanism of entrainment nor the rate at  which it proceeds are fully understood 
(cf. Townsend 1970; Phillips 1972). It seems clear however that the rate of entrain- 
ment is, as Townsend states, ‘set bythe structure of the whole flow ’. In  situations where 
the plume motions satisfy similarity solutions the structure of the whole flow is 
directly related to the steady upward velocity characteristic of the plume at  any level. 
For such cases Batchelor ( 1  954) pointed out that the mean inflow velocity across the 
edge of the plume is proportional to the steady local upward velocity of the plume. This 
observation will be regarded as a basic assumption applicable to the present situation 
even though exact similarity forms are not obtainable. This is the ‘entrainment 
assumption ’, and implies the same kind of turbulence structure and balance of forces 
a t  each level (Turner 1973, chap. 6; this reference contains further discussion of the 
assumption and its successful use in several situations). 

The exact entrainment assumption to be used here is as follows: First the detailed 
ensemble-averaged structure of the plume is replaced by equivalent horizontal inte- 
gral representations. Problems of definition of limits of integration inherent in this 
approach (see Kotsovinos & List 1977) are avoided by a novel step in the analysis 
(following Walin 1971) in which the plume is considered to overlie part of the interior. 
Then the horizontal inflow velocity from the interior to the plume at  each level is 
assumed to be proportional to the steady upward velocity characteristic of the inte- 
gral representation of the plume relative to vertical interior motions at the same level. 
The proportionality constant, a, is referred to as the entrainment parameter. Its value 
may be a weak function of the local Froude number of the plume as is suggested by a 
recent study of plane turbulent buoyant jets by Kotsovinos & List (1977). Without 
more information, however, there seems little point in complicating the analysis in 
view of the demonstrated success achieved in the present situation utilizing a constant 
01 (Baines & Turner 1969; Baines 1975; Germeles 1975). A value close to 0.08 for a is 
appropriate here. 

Now in a restricted formulation of no internal buoyancy generation, a non-diffusive 
interior and all surfaces non-conducting, Baines & Turner (1969, hereafter referred to 
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FIGURE 1. Definition sketch of the model; two-dimensional symmetry about z = 0 is implied. 

as BT) first proposed the present problem in three-dimensional axisymmetrjc and two- 
dimensional symmetric geometries. Under assumptions which will be examined more 
carefully in the next section, they obtained large-time solutions for most properties of 
interest. Laboratory experiments confirmed predictions of the model and established 
the use of the entrainment assumption in this context. BT applied their results to 
explain in physical terms the once controversial ‘ counter-gradient ’ heat flux (Priestley 
1959; Deardorff 1966) characteristic of clear-air convection in the lower atmosphere 
and also of the model problem of parallel plate convection at high Rayleigh numbers. 
Other applications have included the cooling of a room by a strip cooler, the heating of 
the atmosphere below the cloud-base, and the cooling of the upper mixed-layer in the 
ocean. 

I n  extending the BT model Baines (1975) has relaxed the condition of an insulating 
upper surface to the box to  permit entrainment of overlying light fluid by the turning 
plume (the hatched region in figure 1)’ thus allowing more realistic modelling of 
geophysical problems. For convenience of presentation the present model does not 
permit this extension although it is straightforward. An extra source of buoyancy flux 
to the interior must be included and conditions must be imposed on the strength of the 
density jump a t  the upper surface to ensure that the plume remains within the box. 

Germeles (1975) has also extended the work of BT to include forced plumes from 
nozzles which may be off-centred and inclined and has applied the work to the filling 
of LNG storage tanks. The criticisms of Kotsovinos & List (1977) are germane to 
Germeles’ approach and should be considered in similar extensions. 

The generality of the present model allows its application to  new problems as well 
as to the above with weaker restrictions applied. Thus for example the inclusion of 
radiation of buoyancy permits study of simple models of convection in the earth’s 
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mantle and of the circulation in enclosures with intense localized heating from below. 
With a diffusive interior and conducting lower boundary a case of a true steady state 
with only one buoyancy source is possible. This case has been applied in an inverted 
realization to the deep circulation of the Red Sea (Manins 1 9 7 3 ~ ) .  An extension of the 
model to include a non-uniform buoyancy distribution on the lower boundary to 
supply the turbulent plume in the confined region has also been proposed (Killworth 
& Manins 1979). 

Finally, consider the parameter range for validity of the model. It will be shown to 
be valid when the aspect ratio A E L / H  and Prandtl number v = u / K  are fixed and 
greater than unity (possibly large) and the Grashof number (and hence the Rayleigh 
number) based on the depth and plume source strength is large, tending to infinity. 
These are the conditions for a passive interior and dominant boundary layer (the 
plume) and are the same as required for similar behaviour in convection between 
differentially heated parallel plates, no matter whether these are horizontal (e.g. 
Moore & Weiss 1973; Wesseling 1969) or vertical (Gill 1966; Cormack, Leal & Im- 
berger 1974; Imberger 1974). The entrainment parameter a is the natural ordering 
parameter here since it indicates the relative strengths of interior and plume motions 
(as well as the ratio of the scale thickness of plume to the height of the box) and this 
ratio must be small for the desired circulation to exist. 

2. The equations of motion for the confined plume model 

buoyancy at  a point where the density is p is defined by 
If at  an arbitrarily chosen time a reference density of the fluid in the box is p1 and the 

A = -S(P - Pl ) /P l7  (2.1) 
then to the Boussinesq approximation (Gray & Griorgini 1976), the governing differ- 
ential equations for the two-dimensional flow perturbation from the hydrostatic field 
characterized by p1 are 

au au au 
at ax az 
- +u- +w-  = - 

a q a x  + aw/az = 0. I 
Herep is the perturbation pressure and u and K are diffusion coefficients of momentum 
and buoyancy. The boundary conditions on the surfaces of the box containing the 
confined turbulent plume (figure 1) are 

w = 0, aA/ax= 0 on x = H ,  

x = 0 is a line of symmetry. 
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Here 6(x) is the delta function and the conditions on z = 0 specify the rate of buoyancy 
diffusion through the boundary and the strength of the plume. 

Since by assertion the turbulent plume is the prime mover of the system it is clear 
that the greatest velocity and buoyancy scales in the box are those characterizing the 
behaviour of the plume. Subscript I denotes a variable representing the properties of 
the interior, subscript P a variable of the plume region, and superscript P a variable 
representing the properties of the plume region measured relative to the interior. Then 
the solution for the plume region is partitioned as follows : 

#P = # I +  #p ,  (2.4) 

where # is any one of the dependent variables and #P is assumed negligibly small 
everywhere except in the thin turbulent shear layer characterizing the plume. While 
varying with the interior scale H along the plume, #p is thus assumed to vary much 
faster perpendicular to the plume. This variation is described by a characteristic 
plume half-width b, < H ,  so that #p = 0 as x/b+co. 

The entrainment assumption ($1) may be written to a first approximation [see 
(2.23) below for an exact statement] as 

-u I=c twp  as x+O. (2.5) 

Then analysis (Manins 1973 b )  suggests the following non-dimensionalization results 
in an adequate normalization of the variables: 

(x~ ,x , , z )  = H ( A ~ * , ~ ~ * , C * ) ;  t = a - P ~ ; f ~ 7 * ;  = a-Wtp*; 
A = a-$Ft H-lA*; (u, wI,  w,) = a$Fi(tc*, wT/A, w,*/a); 

where A = L / H  is the aspect ratio of the box, and * denotes a non-dimensionalized 
variable. The normalization for the outflow region is discussed in $2.3. 

The separate regions of interior, plume and outflow are now considered in turn. 

2.1. The interior 

The equations of motion ( 2 . 2 )  are written in terms of dimensionless interior variables. 
Then, dropping the asterisks, there results: 

auz aw, - + - = o ;  
at ac 

where u = v/K is the Prandtl number, and R = a*Fi H / v  is a characteristic Reynolds 
number (or square root of a Grashof number) of the interior (and of the plume). Then 
subject to the conditions 

RIA 2 1 B a2, A 2 I, u 2 1 . (2.8) 



770 P. C. M a n i n s  

the equations may be expanded in terms of the small parameter u2 as follows. Setting 

$1 = $0+a2$1+a4$2+ ... ; 
then the zeroth-order equations obtained from (2.7) by substitution of this expansion 
and collecting terms in powers of a2 are 

o = - apo/at, o = - ap,/ao- A,, (2.9a, b )  

which imply A, = Ao(7,c) only, so 

which implies w, = w,(T, c), and 

( 2 . 9 ~ )  

(2.9d) 

Here J = a*Fb H 2 / ~ L  = Ru/A expresses the relative importance of advection 
processes compared to diffusion processes in the box. J will be greater than unity in 
practice as free convection situations are primarily advective (Stommel 1962). 
Further, equations (2.9) show that to lowest order the interior isopycnals are horizon- 
tal and vertical motion is independent of position along any isopycnal. 

Now the entrainment assumption (2.5) is in dimensionless terms 

-u, = wp as E+O,  (2.10) 

so from (2.9) it follows that 

u , = u , J f = o ( l - ~ )  = - w P ( l - t )  (2.11) 

and 

(2.12) 

where uOls=, is u, evaluated a t  E = 0. 
It can be seen from the solution (2.11) that to lowest order the horizontal velocity in 

the interior increases linearly from zero a t  the far wall of the box to a maximum a t  the 
plume edge where the interior fluid is incorporated into the plume by entrainment. 
The interior is also subject to a sinking motion (2.12) just sufficient to make up the loss 
by entrainment a t  any level. It will be found (3 3) that in all cases wp is only a weakly 
decreasing function of increasing 5 so to a first approximation the interior stream- 
function defined such that 

may be written as 
$I = const x c(1-5). (2.13) 

Thus the interior flow to lowest order is an elementary stagnation flow with stagna- 
tion point a t  the lower right-hand corner of the box in figure 1. 
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The first-order interior equations obtained from (2.7) subject to (2.5) are 
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(2.14) 

I f  A2 z 1 then from (2 .14a ,  b )  the interior region would be characterized by 
vertical accelerations comparable to the buoyancy and horizontal accelerations. 
Further, from (2.6) the vertical and horizontal velocities would be comparable. The 
result for the interior would be an ‘ overturning ’ type of behaviour as observed by BT 
when they varied the aspect ratio of their box to  near unity. This is not the behaviour 
sought here so the restriction on A must be strengthened to  A2 % 1 .  Laboratory experi- 
ments (Manins 19733) show that A 2  > 1.5 is sufficient in practice. 

Just  as for the zeroth-order equations (2.9)’ the diffusion of buoyancy becomes 
important in equation ( 2 . 1 4 ~ )  on a depth scale 5 6 l / J & .  A boundary layer of thickness 
6 = H/J*  = (k-a-~F;~L)*,  independent of the depth of the box, exists adjacent to the 
surface from which the turbulent plume rises. A thin buoyancy boundary layer, 
analogous to an Ekman layer in rotating flow problems, is also present on the wall 
5 = 1 but will not be considered here (see Walin 1971 for further discussion). 

Although the solutions (2.11) and (2 .12)  to the zeroth-order equations will be 
assumed to  describe the interior to sufficient accuracy, it may be further noted that 
from (2.14) the first-order horizontal pressure gradient for steady flow may be written 
as 

Now awp/a< < 0 for all 6 in the region of the interior so ap,/at > 0 in the same range. 
Thus the maximum horizontal pressure gradient in the interior is in the vicinity of the 
plume and is consistent with the plume being confined to as narrow a neighbourhood 
of ( = 0 as possible. 

2.2. The turbulent p lume  

Now the equations of motion (2.2) for the plume may be written symbolically as 
(Walin 1971) L?’(#$>) = 0. By definition 

so 
(2.15) 

represents the equations of motion of the plume relative to  interior motions. 

(qV) and turbulent fluctuating parts (4’) 
Relative plume variables (qF) are represented as the sum of their ensemble mean 

r$p = fp+$’. 
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Next, ensemble averages of equations (2.15) are taken. The plume is driven by the 

buoyancy AP to a mean velocity w p  so the Reynolds stress terms which result from the 
averaging process must always influence but never dominate the plume motion. This 

implies u w 5 O I ( W ~ ) ~ ,  u'A' 5 clwPAP and w'A' 5 wPAP in the plume. Then subject to 
further requirements which ensure diffusion is small, namely 

N 

- -- " - -n 

1 > a ,  R $  l/a, ~2 1, (2.16) 

the plume equations [and hence the interior equations (2.9a, b ) ]  are steady to O(a/A) 
and, omitting the horizontal momentum equations, become 

N N N 

N awp -amp awp a - - 
UP- +wP- +u,- + - u w  = Ap, 

8'5 ac at % 

and 

The buoyancy source condition from (2.3) on c = 0 becomes to lowest order 

N N  - /I+m S(t) [wpAp+ w'A'] d t  = 1 a t  c = 0 

and the definition of q5p gives 
N N - - - -  

lim {up, wp, AP, u'w', u'A', w'A'> = 0 ,  
X+*m 

(2.17) 

(2.18) 

(2.19) 

where, from ( 2 . 6 ) ,  x = At/a.  
Now the results of Kotsovinos & List (1977) show that as much as 40 % of the 

buoyancy flux wPAP is by the turbulent flux w'A' in a free plume. A similarity state is 

implied in which w'A'/wpAP is a constant. For the present problem of a plume in a 
confined region a state of similarity for the buoyancy flux is assumed. The equations 
(2.17) are integrated across the width of the plume and (2.19) imposed. 'Top hat '  
values Wp and K P  and dimensionless plume half-width b (of dimensional magnitude 
aH) are defined by 

rv 

- N N  

The parameter h defined by ( 2 . 2 0 4  expresses the above similarity assumption, as well 
as allowing for the observed slight difference in horizontal extent of the buoyancy and 
velocity fields (e.g. Rouse, Yih & Humphreys 1952). For a 60 yo contribution to the 
buoyancy flux by mean transport, h x 1.7. 

Henceforth the overbar will be omitted from the scale values defined by (2.20), 
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and upon integrating (2.17) the mean vertical momentum equation for the plume from 
(2.17 a )  becomes 

d - [ b ( ~ ~ ) ~ ]  = bAP. 
d5  

The buoyancy equation (2.17 b)  becomes 

and continuity ( 2 . 1 7 ~ )  using (2.10) is now 

(2.21) 

(2.22) 

(2.23) 

The latter part of (2.23) is the mathematical statement of the entrainment assumption 
described in 9 1 .  

The boundary condition (2.18) for the plume becomes 

bwP = b(ziF)2 = 0,  AbwPAP = 1 a t  5 = 0. (2.24) 

The equations (2.21)-(2.23) with (2.24) are similar to the plume equations derived 
by Morton, Taylor & Turner (1956) and used by BT. The major difference is that here 
the dependent variables are all relative to the corresponding variables in the interior, 
thus permitting a variety of interior motions to be incorporated. 

2.3. T h e  region of outflow 

The details of the outflow are of secondary importance so long as the region occupies 
only a small portion of the box and the time scale for the outflow to distribute fluid to 
correctly supply the interior is a small fraction of the time scale of the interior. The 
main purpose here is to show that these conditions are met albeit not strongly. 

Well-mixed turbulent fluid spreads laterally from the turning plume (hatched region 
in figure 1 )  driven by the pressure gradient due in part to the small buoyancy excess 
of this fluid relative to  that near the far end and interior. Interfacial shear stresses 
between the counter-flowing outflow and interior bring the fluid there to rest in the 
horizontal direction. At the same time the isopycnals in the outflow are displaced 
laterally and downwards by subsequent outflow fluid of greater buoyancy and a small 
discontinuity in the buoyancy occurs at the interface (the surface u = 0 )  close to the 
plume only. Since the time scale for lateral outflow will be shown to be significantly 
shorter than the interior timescale the isopycnals are caused to become increasingly 
tilted towards horizontal, further aided by the fact that fluid displaced into the interior 
encounters flow back towards the plume. I n  this way the outflow merges with the 
interior fluid to satisfy the solutions (2.11), (2.12). 

For convenience a new co-ordinate system (x, zl) is defined with the same orientation 
but centred a t  the beginning of the outflow region, as shown in figure 1 .  The motions 
in this region must be steady since both the plume and interior regions are steady. 
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Then denoting by subscript T a variable in the thin outflow of thickness h, the bound- 
ary layer equations downstream of the turning region are 

(2.25) 

O = - apT/azi+ AT. 

The turbulent shear stress in ( 2 . 2 5 ~ )  has been parameterized in terms of an eddy- 
diffusion coefficient K .  Integrating equations (2.25) with respect to zl and utilizing 
(2.9a, b )  gives for the horizorhal momentum equation 

where subscript m indicates evaluation a t  z1 = - h, that is z = z, (figure 1). 
Outflow scales U ,  A are defined by 

0 

- h  -h 
U2h = / u?j dz,, 6h2/2 = So z1 (AT - Azm) dz,, (2.27) 

and it is noted that AT, near the plume equals APm = A; + Azm since the fluid in the 
turning region is well mixed. Thus 6 is the buoyancy difference near the plume between 
the outflow and interior. Then up to distances downstream in the outflow where the 
right-hand side of (2.26) becomes significant, (2.26) may be written as 

Fr2 = U z / ( d h )  M 3. (2.28) 

That is, the internal Froude number of the outflow is near unity. 
A close analogy may be drawn between the behaviour of the outflow in this problem 

and that of the intrusion of homogeneous fluid a t  constant rate and high R into a stably 
stratified environment (Manins 1976; Imberger, Thompson & Fandry 1976). In  that 
problem the speed and thickness of the intrusion is set predominantly by the local 
buoyancy-inertia dynamics and is not simply related to dimensions of the source. 
Here too it may be expected that the outflow thickness is locally determined and will 
be constant for some significant distance downstream. Laboratory experiments have 
confirmed this is so (Manins 1973b): departure from constant thickness occurred only 
over the latter 40 % of the range of x. 

This description of the outflow in terms of a unique internal Froude number is, as was 
found for the case of intrusions a t  high R (Manins 1976)) an oversimplification of a 
closely coupled system. However, for the purposes of deriving a time scale, T ,  and 
thickness, h, it  is assumed that (2.28) is adequate and for ease of presentation results 
for the case of a practically non-diffusive fluid are anticipated (3 3.1). Since then (3.5) 
bwPAP = ( I  - <) F,/A, a t  z1 = - h 

(2.29) 

It is noted that near the plume Uh M bwPI-, and it follows from (2.6)) (2.28) and (2.29) 
that 

h / H  = hi(a/Fr)) (qp,*)i (2.30) 
and 

(2.31) TT/TI = uz /U  = hi(a/Fr)* (qc*)i /bk.  
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With h = 1, a = 0.08 and Fr = 2-4 it follows for this case h /H z 0.25, T,/T, x 0.26. 
Thus the outflow occupies about 25 yo of the box and the time scale for the residence 
of plume fluid in the interior is some four times larger than that of the outflow. 
Laboratory experiments (Manins 1973 b )  support these findings. 

If it were merely the case that mean kinetic energy was conserved in the turning 
region, the plume would turn in its own width so near the plume h x b, and U M w$. 
Since b, z az,, h / H  M a/( 1 + a) which is a much smaller ratio than given by (2.30). But 
the internal Froude number in this case is 

Thus the outflow entrains fluid from the interior until the local internal Froude num- 
ber (a function of position downstream) drops to a value determined by a downstream 
‘control’ (Wilkinson & Wood 1971) .  Now the ‘density jump’ which must form imme- 
diately downstream of the turning plume is unstable because the downstream control 
is a wall (z = L). The jump must ‘flood’, the layer thickens and entrainment ceases. 
The flow is then described by the previous analysis so the outflow scales are (2.29) 
and (2.30). 

3. Solutions for the asymptotic state of large time 
The buoyancy flux into the box is steady and 

as is clear from figure 1 .  In  the asymptotic state of large time the buoyancy a t  every 
point increases linearly with time. Consider the class of solutions to (3 .1)  in which 
aA/at is independent of position so that buoyancy a t  every point increases linearly 
with time at the same rate and the velocities are steady. 

Then in particular, in dimensionless variables again, 

Equation (3.2) shows that there are three different steady solutions to the problem of 
turbulent buoyant convection from a single source in a confined region: 

(a)  yc = yR = 0, 

(b )  yc = -yR 5 1, a diffusive, radiating steady system; 

( c )  yc = - yR = 1,  a non-diffusive, radiating steady system. 

Other solutions involve non-zero aA,/& so then the interior buoyancy varies 
linearly with time. If equal and opposite sources may exist in the box then a further 
set of steady solutions is obtainable. One such case was considered in BT as a model of 
parallel plate convection at high Rayleigh number. 

a diffusive, steady system; 
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Now in view of (2.4), continuity of volume flux across any horizontal surface below 
the outflow gives 

qp bWP = - WI 7 (3.3) 

and using (3.2) and (3.3) the buoyancy equation for the interior ( 2 . 9 ~ )  becomes 

If now the buoyancy flux equation (2.22) for the plume is substituted into (3.4) and the 
result integrated using the boundary conditions that a t  5 = 1 ,  aA,/a[ = 0, bwPAP = 0, 
then the result is 

(3.5) 
1 8AI 

AbWPAP = yc( 1 - 5)  + - - U P  
J a[- 

I n  terms of the flux variables qp, up  defined in (3.3),  (3.5) and the momentum flux 
mp = b(wP)2, the governing equations (2.21) to (2.23) and (3.5) become 

with boundary conditions [from (2.24)] 

qp = m p  = A, = 0,  u p =  1 a t  [ =  0,  (3.7) 

where the reference density for A, has been chosen as that value a t  5 = 0. The time 
dependence of A, is given by (3.2), w, by (3.3) and u, by (2.11), (2.12). 

A useful alternative set to (3.6) may be obtained by the stretching 

Then in (3.6) substitute for q p  etc. from (3.9), where 

qp = J-$q(T), mP = J- im(v) ,  

up = v(v),  AI = J*A(r)  +B(7) .  
Equations (3.6) become 

(3.9) 

(3.10) 

The equations (3.6) or (3.10) with (3.7) are readily solved for specified yc ,  y R  and J .  
Several illustrative examples are given next, 
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3.1. A non-digusive, non-radiating interior 

The solutions obtained by BT can be recovered by taking J+oo in (3.6) with ye = 1 
and yR = 0. It may be seen that this is a singular limit for the interior buoyancy field 
(see 3 3.3). The solutions to (3.6) in this special case are well represented by the follow- 
ing power series : 

4P = h-3[y-q2_.-3 1cG53- . . .I,  mP = h-3[5-~~2----1-53- 1 6 0  ...I. (3.11) 

I n  dimensional variables the plume solutions are 

(3.12) 

and for the interior 

(3.13) I uI = -afh-+-F$(l-$) [I  - 4 "5--9-62 1 6 0  - . . .], 
W ,  = -&h-*F,$(H/L) [ 5 - & 5 2 - & G 5 3 -  . . . I  

A, = h$ H-l{r+In<+i<++$,,<2+ ... +Z). 
and ( "% 

Here 5 = z/H, 6 = x / L  and r = Lt/(aOFi). The constant of integration 1 in ( 3 . 1 3 ~ )  
must be chosen by referring A, to a reference density other than a t  5 = 0. 

These solutions are plotted in figure 8 of BT with h = 1.  The singular nature of this 
case with regard to A, and AP is evident. As discussed by BT the action of the turbulent 
plume in the box gives rise to  a stably stratified interior. This is the central feature of 
the model in general and this case in particular. Several applications of these solutions 
(actually their three-dimensional equivalents) are given by BT. 

3.2. A diflusive steady state 

The equations describing a diffusive steady state are (3.10) with yc = y R  = 0. The 
balance of terms in the interior is the classical steady oceanic pycnocline balance 
between vertical advection of buoyancy and vertical buoyancy diffusion (e.g. Wyrtki 
1961). Interpreted in terms of a confined convective system and grossly simplified, the 
downwelling of cold salty water in the polar regions of the oceans, corresponding to the 
sinking, negatively buoyant plume of this model when inverted, causes the upward 
advection of negative buoyancy in the rest of the world's oceans. This in turn is 
balanced by the downward diffusive erosion of the pycnocline. I n  this way the mean 
position of the pycnocline may be held to  a fixed depth. 

Series solutions for (3.10) in this case are adequate only for small 7. The first few 
terms of the series are 

q = h-+(r - $573+ . . . ), m = h-*(y - ?673 + . . . ), 
v =  1 - 1  27 2 +-&y4- ...) A = h-3(7-4=73+&y5-...).  

Numerical solutions are displayed in figure 2. The primary difference between these 
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FIGURE. 2 Dimensionless asymptotic solutions: (a)  for the plume; ( b )  for the diffusive, steady 
interior. Note that for large 7 the interior approaches homogeneity with a strong pycnocline 
below. The maximum 7 relevant depends on the magnitude of J .  

solutions and those of $ 3.1 lies in the buoyancy field A, in the interior which now must 
have a finite gradient at 7 = 0 to conduct buoyancy through that surface a t  a suffi- 
cient rate to balance the flux into the plume a t  0.  Moreover the interior buoyancy field 
asymptotes to neutral stability with a constant value of AI - 1.282439 as ~ - + c o .  
Whether or not this asymptote is even approached in a given situation depends on how 
large J is. (From (3.8) the maximum value of 7 is J J . )  

The results for this case have been applied and extended to model the deep circula- 
tion of the Red Sea (Manins 1 9 7 3 ~ ) .  

3.3. A weakly diffusive, time dependent interior 

More realistically, the fluid of $3.1 would be weakly diffusive ( J  9 1). Consider the 
situation where r/J* z 0 even for large 7. Then equations (3.10) become the boundary 
layer equations applicable near 6 = 0. Their solutions are, for large 7, 

q ( Y C / 4 +  x 7, m ( Y , l V  x 7, v Y c  (3.14a, b,  c) 

and, to within a few per cent, 

A, N l B J J (  1 - yc)  + (yc + YR) 7. (3.14d) 

The solutions of $3.2 and their limit (3.14) are the ‘inner’ solutions and the non- 
diffusive solutions of 8 3.1 are the ‘outer’ solutions of a matched asymptotic expansion 
(Van Dyke 1975) for this problem. To be accurate, the time dependence of AI in 
( 3 . 1 4 4  and ( 3 . 1 3 ~ )  must be the same. This can be so if for example yR = 1--yc. A 
physical realization of this may occur in a model of convection in the lower atmosphere. 
If the modelled interior is relatively dry except near the lower boundary where there is 
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a strong increase in water vapour concentration then the interior solutions will be 
unaffected by net radiation absorption. Near the lower ‘ diffusive ’ boundary, however, 
the optical thickness of the air is large and net radiation absorption may be significant 
there. If in that  region yR = 1 - yc then the ‘inner’ and ‘outer’ solutions match in 
temporal behaviour and the matching rule of matched asymptotic expansions may be 
applied to the interior buoyancy field to obtain the undetermined constant 1 in equation 
( 3 . 1 3 ~ ) .  It is given by 

limb, [from (3.14d)l = lim A, [from (3.13c)l with J fixed (large) in both limits. 
7- * C-+O 

Then 
I = 1 - 2 8 ( 1 - y c ) J ~ + ~ l n J .  (3.15) 

It is now clear that  the solutions of BT are the outer solutions of the more general 
singular perturbation problem specified by (3 .6 )  and (3.7) for large J .  

3.4. A diffusive, radiating, steady interior 

I n  this steady diffusive system yc = - yR 5 1 and J is finite. Full solutions, similar to 
those of 5 3.2, are readily obtainable. 

at any level is defined as Now the mean buoyancy 

Z = (LA1 + bAp)/L. 
- 

is the value measured by an averaging instrument passing transversely over a field 
of line sources. Alternatively it is the value measured by a fixed averaging instrum_ent 
in a convective field subject to horizontal advection. It can readily be shown that a&/& 
is always stable and close to  aAI/az for the present case and in fact for the general 
problem formulated in 3 2. Thus the action of the unstable plume is to stably stratify 
the box a t  any level both in the interior and on average. 

4. Concluding remarks 
The extended model of turbulent convection from a source in a confined region 

derived here applies for the following parameter restrictions. (i) The Prandtl number 
g = v / K  2 1 so buoyancy diffusion does not dominate over advection. (ii) The aspect 
ratio A = L / H  must satisfy A2 9 1. A2 > 1.5 appears to be adequate. Then the interior 
behaves passively, forced by the boundary layers. (iii) The square of the group 
R E aSFB H / v  is the Grashof number characterizing the interior and the turbulent 
plume above the source of strength F,, and must satisfy R 9 l / a ,  RIA 2 1 where 
01 < 1.  These restrictions ensure that the plume is fully turbulent and thin in lateral 
extent. 

The system is steady to O(a/A) with only the buoyancy a linear function of time a t  
every point in the limit of large time. The streamfunction for the interior is then 
approximately t,hl = constant x <( 1 - 6). 

Consideration of the outflow region has shown that there the flow is controlled 
predominantly by inertia-buoyancy dynamics and is similar to the problem of an 
intrusion into a stratified fluid a t  high R. Since 

h /H z (a/Fr)$ and T,,/T, M (a/Fr)*, 
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the outflow occupies a small but significant fraction of the box but is able to redistri- 
bute plume fluid quickly enough to satisfy the requirements of the lowest-order solu- 
tions for the interior. 

It may be shown that the corresponding three-dimensional axisymmetric problem 
must meet the above restrictions [to within a numerical factor of O ( l ) ]  for validity. 
The outflow region in that case also has the same scales as found here. 

Much of this paper is part of the writer’s Ph.D. dissertation (Manins 1973 b ) .  Sincere 
thanks are owed to J .  Stewart Turner for inspiration and example. 
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